Variables

Variables

In any experiment there are 3 variables:

- an independent (or input) variable
- a **dependent** (or outcome) variable
- some control variables

Let's look at each type....

Independent (input) variable

This is the thing that you decide to change.

Example 1

Investigating how a weight affects the length of an elastic band.

You decide the weight to apply, so:

Weight is the <u>independent</u> variable.

^{New}Physics For You

Independent (input) variable

This is the thing that you decide to change.

Example 2

Investigating how the rate of cooling of a beaker depends on the initial temperature.

You decide the initial temperature, so:

initial temperature is the <u>independent variable</u>.

May<mark>Physics</mark> for You

Independent (input) variable

This is the thing that you decide to change.

Example 3

Investigating how the current through a resistor depends on the voltage across it.

Which is the independent variable as you add cells? The voltage is the independent variable.

Dependent (outcome) variable

This is the variable that changes as a result. It is the variable that you measure.

Example 1 Investigating how a weight affects the length of an elastic band.

You measure the resulting length of the elastic band, so:

Length is the dependent variable.

Jaypinysics for You

Dependent (outcome) variable

This is the variable that changes as a result. It is the variable that you measure.

Example 2

Investigating how the rate of cooling of a beaker depends on the initial temperature.

You measure the temperature every minute as it cools, so:

temperature is the dependent variable.

Marten For You

Dependent (outcome) variable

This is the variable that changes as a result. It is the variable that you measure.

Example 3

Investigating how the current through a resistor depends on the voltage across it.

Which is the dependent variable here?

The current is the dependent variable.

Jaw hysics for You

Nelson Thornes

Jawphysics for You

Control variables

These are all the variables that must <u>not</u> change, to make sure it is a fair test.

Example 1

Investigating how a weight affects the length of an elastic band.

You must use the <u>same</u> elastic band all the time, and the <u>same</u> scale etc,

so it is a fair test.

^{Naw}Physics For You

Control variables

These are all the variables that must <u>not</u> change, to make sure it is a fair test.

Example 2

Investigating how the rate of cooling of a beaker depends on the initial temperature.

You must use the <u>same</u> beaker, with the <u>same</u> amount of water, in the <u>same</u> position in the room, at the <u>same</u> room temperature, so it is a fair test.

Nelson Thornes

Control variables

These are all the variables that must <u>not</u> change, to make sure it is a fair test.

Example 3

Investigating how the current through a resistor depends on the voltage across it.

Which are the control variables here?

Use the <u>same</u> circuit at the <u>same</u> temperature each time.

Jay Physics For You

Tables

When you draw up a table of your results, the <u>independent variable goes</u> in the <u>first</u> column, like this:

If you take several readings of the dependent variable, then you can calculate the mean (average)

Then your results will be more reliable.

In Summary

The independent variable is

• weight

The dependent variable is

length of the elastic

The control variables are same elastic band, same scale, etc, so it is a fair test.

Example 1

In Summary

Example 2

- The independent variable is
- initial temperature

The dependent variable is

temperature as it cools

The control variables are the <u>same</u> beaker, with the <u>same</u> amount of water, in the <u>same</u> position in the room, at the <u>same</u> room temperature, so it is a fair test.

In Summary

Example 3

The independent variable is

voltage (p.d.)

The dependent variable is

• current

The control variables are the <u>same</u> circuit, at the <u>same</u> temperature each time, so it is a fair test.

May**Physics** For You

Learning Outcomes

You should now:

- Understand the difference between
 - independent,
 - dependent, and
 - control variables
- Be able to identify these variables when doing your practical work.

For more details, see:

> New Physics for You, pages 7, 360

For more free PowerPoints, visit

the web-site at www.physics4u.co.uk

If you are connected to the web at the moment, click below to see what's available:

http://www.physics4u.co.uk/

