Name	Period	Date
Ttainio		Build

3:41 Penny Lever Lab

Using the supplies listed below, build a small lever like the one pictured. Use the ruler as a lever, the pencil as a fulcrum, and tape the cups to the ends to hold the pennies. Test the lever with pennies following the instructions given.

Supplies Needed:

- 2 small paper cups
- one ruler (30 cm long)
- one pencil
- some tape
- about 60 pennies

Lever One:

Build Lever One according to the diagram shown. Place the pencil fulcrum at the 15 cm mark on the ruler. Tape the pencil to the ruler if needed to keep it from sliding. Place 30 pennies in the left side cup. See how many pennies need to be added to the right side to get the lever to tip, and lift the left side cup. Record your results on the data table provided.

Lever Two:

Build Lever Two in the same way. Place the pencil fulcrum at the 10 cm mark on the ruler. Place 30 pennies in the left side cup. See how many pennies need to be added to the right side to get the lever to tip, and lift the left side cup. Record your results on the data table provided.

Lever Three:

Build Lever Three in the same way. Place the pencil fulcrum at the 5 cm mark on the ruler. Place 30 pennies in the left side cup. See how many pennies need to be added to the right side to get the lever to tip, and lift the left side cup. Record your results on the data table provided.

Middle School Physical Science by Jay Russell Bingaman © 2003, published by TEACHINGpoint **95** as part of the Expert Systems for Teachers[™] Series

3:41 Penny Lever Lab

Record the data from the three levers into the table below:

The output distance is the length of the left arm of the lever. The input distance is the length of the right arm of the lever. The output force is the number of pennies lifted, while the input force is the number of pennies needed to tip the lever.

	Output Distance	Input Distance	Output Force	Input Force
Lever One				
Lever Two				
Lever Three				

Look over the data in the table carefully. What is the relationship between the location of the fulcrum and the input force needed to lift 30 pennies?

What do you think would happen if you were to redo this lab using a meter stick instead of a ruler?

3:42 Energy Unit Review

List some examples of potential energy stored by gravity:

List some examples of potential energy stored by chemicals:

List some examples of kinetic energy:

List the seven forms of energy:

What does the law of conservation of energy state?

List the 6 types of simple machines:

3:43 Energy Alternatives Project

We rely on electricity for nearly everything we do. Electrical power is necessary for cooking and storing food, lighting our homes, and running our clocks, TVs and radios. In fact your performance on this assignment relies on a steady power supply!

Where does this electricity come from? What other forms of energy are used to get our electricity? In most cities, energy sources like coal, gas or nuclear energy are used to create heat that drive steam engines to create electricity. Which of these sources are used around the United States? Are we making the wisest choices about where we get our energy? This assignment will address these questions.

In groups of about three students, choose a source for electrical energy which you would like to find out more about from the list below.

- nuclear
- coal
- oil •
- natural gas
- solar
- geothermal
- wind energy
- tidal energy
- biomass

Use the library and Internet resources to find the answers to the following questions:

- How is this fuel or energy source converted into electrical energy?
- Where is this energy source being used now?
- Should other areas of the world be making use of this source of energy? Why or why not?
- What are the advantages and disadvantages of this source?

Be sure also to consider and mention:

- cost
- availability
- environmental impact

Once you have found thorough answers to these questions, present what you have learned to the class. The presentation should answer all of the questions and address all of the listed considerations. Visual aids should be used to help illustrate your point. Your presentation will be evaluated on the quality of the information, and the merits of your arguments.

3:43 Energy Alternatives Project

Here are some Internet resources that may be of use to you:

- The Utility Connection, http://www.utilityconnection.com/page2b.html •
- American Solar Energy Society, http://www.ases.org/ •
- American Wind Energy Association, http://www.awea.org/
- Energy Efficiency and Renewable Energy Network, http://www.eren.doe.gov/
- Department of Energy, http://www.eia.doe.gov/cneaf/
- Charlotte Science, http://www.swifty.com/apase/charlotte/formse.html

Name_____Period _____Date _____

4:44 Chemical Composition Unit Map

4:45 Particles Lesson Diagram

Key Lesson Questions

Period _____ Date _____

4:46 Particles Assignment

Describe a proton's:	Draw an arro	w between the	names of
Mass	 the particles	to their location	n in the
Charge	 atomic diagra	am.	
Location in an atom			
Describe a neutron's:			\backslash
Mass		\frown	
Charge			
Location in an atom			
Describe an electron's:		/	
Mass			
Charge			
Location in an atom	 Proton	Neutron	Electron

Look at the diagram below and answer the following questions:

What is the total mass of the figure on the right? _____ amu What is the net charge of the figure on the left?

What is the net charge of the figure on the right?

Devied	Data	
Pellou	Dale	

Name_____

4:47 Particles Within Atoms

The chart below that tells you information about the properties of some atoms. Atoms get their properties from the particles within the atoms. Fill in the missing information.

Element	Symbol	Atomic Number	Mass Number	Number of Protons	Number of Neutrons	Number of Electrons	Net Charge on Atom
Hydrogen	drogen H 1		1				+1
Helium	Не	2			2	2	
Fluorine	F	9	19			9	
Nitrogen	N	7			7		0
Zinc	Zn			30	35	29	
Carbon	С	6	14			6	
Aluminum	Al		27	13	14	13	
Oxygen	0		16	8			0
Cobalt	Со	27			32	25	
Calcium	Ca	20	40				+1
Boron	В	5	11				0
Krypton	Kr	36			48	36	0
Bromine	Br			35	45	36	
Magnesium	Mg	12			12	10	

Name______Period _____ Date _____

4:48 Atoms Lesson Diagram

4:49 The Periodic Table of Elements

1 H								
Hydrogen 1								
3	4							
Li Lithium 7	Be Beryllium 9							
11 Na Sodium 23	12 Mg Magnesium 24							
19	20	21	22	23	24	25	26	27
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co
Potassium 39	Calcium 40	Scandium	Titanium 48	Vanadium 51	Chromium 52	Manganese 55	Iron 56	Cobalt 59
37	38	39	40	41	42	43	44	45
Rb	Sr	Y	Zr	Nb	Мо	Tc	Ru	Rh
Rubidium 85	Strontium 88	Yttrium 89	Zirconium 91	Niobium 93	Molybdenum 96	Technetium 98	Ruthenium 101	Rhodium 103
55	56		72	73	74	75	76	77
Cs	Ba		Hf	Та	W	Re	Os	Ir
Cesium 133	Barium 137		Hafnium 178	Tantalum 181	Tungsten 184	Rhenium 186	Osmium 190	Iridium 192
87	88		104	105	106	107	108	109
Fr	Ra		Rf	Db	Sg	Bh	Hs	Mt
Francium 223	Radium		261	Dubnium 262	Seaborgium 263	Bohrium 264	Hassium 265	Meitnerium 268
			57	58	59	60	61	62
			La	Ce	Pr	Nd	Pm	Sm
			Lanthanum 139	Cerium 140	Praseodymium 141	Neodymium 144	Promethium 145	Samarium 150
			89	90	91	92	93	94
			Ac	Th	Pa	U	Np	Pu
			Actinium 227	Thorium 232	Protactinium 231	Uranium 238	Neptunium 237	Plutonium 244

Middle School Physical Science by Jay Russell Bingaman © 2003, published by TEACHINGpoint 109 as part of the Expert Systems for Teachers[™] Series

Name	Period	Date	

								2 He Helium 4
			5	6	7	8	9	10
			В	С	Ν	0	F	Ne
			Boron	Carbon	Nitrogen	Oxygen	Fluorine	Neon
			11	12	14	16	19	20
			13	14	15	16	17	18
			Al	Si	Р	S	Cl	Ar
			Aluminum	Silicon	Phosphorus	Sulfur	Chlorine	Argon
			27	28	31	32	35	40
28	29	30	31	32	33	34	35	36
Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Nickel	Copper	Zinc	Gallium	Germanium	Arsenic	Selenium	Bromine	Krypton
79	64	61	/()	73	/ `	/9	×()	×4
46	47	48	49	50	51	52	53	54
Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
Palladium	Silver		Indium	11n	Antimony	Tellurium	lodine	Xenon
70	70	<u>00</u>	01	07	02	01	05	96
/8	/9	80 11~	01 Т1	02 Dh	0) D:	04 Do	0.5	00 Dm
Pt	Au Gold	Пд	11 Thallium	PU Lond	DI	Polonium	Actatina	KII Padan
Platinum	197	201	204	207	209	209	210	2.2.2
110	111	112		114		116		118
Llun	Uuu	Uub		Uuq		Uuh		Uuo
Uun	Unununium	Ununbium		U nunquadrium		Ununhexium		Ununoctium
Ununnilium	272	277						

Periodic Table of Elements (Continued)

63	64	65	66	67	68	69	70	71
E u Europium 152	Gd Gadolinium 157	Tb Terbium 159	Dy Dysprosium 163	Ho Holmium 165	Er Erbium 167	Tm Thulium 169	Yb Ytterbium 173	Lu Lutetium 175
95	96	97	98	99	100	101	102	103
Am Americium	Cm Curium 247	Bk Berkelium 247	Cf Californium 251	Es Einsteinium 252	Fm Fermium 257	Md Mendelevium 258	No Nobelium 259	Lr Lawrencium 262

Middle School Physical Science *by Jay Russell Bingaman* © 2003, published by *TEACHINGpoint***11** as part of the *Expert Systems for Teachers*[™] Series